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Algebraic treatment of second Poschl-Teller, Morse-Rosen 
and Eckart equations 

A 0 BaruttS, Akira Inomata§ and Raj WilsonllT 
f International Centre for Theoretical Physics, Miramare, Trieste, Italy 
I Department of Physics, State University of New York, Albany, NY 12222, USA 
11 Department of Physics, Universita di Trento, 38150 Povo di Trento, Italy 

Received 24 February 1987 

Abstract. The method of an earlier paper is applied to the non-compact case to solve a 
family of second Poschl-Teller, Morse-Rosen and Eckart equations with quantised coupling 
constants. Both discrete and continuous spectra, bound state and scattering wavefunctions 
(transmission coefficients) are found from the matrix elements of group representations. 

1. Introduction 

In the preceding paper we proposed (Barut er af 1987a, hereafter referred to as I )  a 
new method of algebraisation of physical equations. In this method the given equation 
is expressed in terms of invariant bilinear forms of ladder operators of certain Lie 
group matrix elements. These ladder operators, which may be constructed from 
Infeld-Hull-Miller factorisations, close under a Lie algebra. From the enveloping 
algebra we obtain the required energy spectrum, and the unitary representations of 
the corresponding Lie group give the exact normalised solutions of the equation. We 
used this method to study the first Poschl-Teller equation for diatomic molecules and 
in this paper we discuss the second Poschl-Teller equation, the Morse-Rosen equation 
for polyatomic molecules and the Eckart equation for the electron penetration barrier. 
Algebraisation of these three equations involves the algebra of the non-compact Lie 
group SO(2, 1) and its unitary representations (Bargmann 1947, Kunze and Stein 1960, 
Barut and Fronsdall965, Toller 1965, Barut and Phillips 1968, Mukunda 1969, Lindblad 
and Nagel 1970, Riihl 1970, Biedenharn and Louck 1981). In each case we obtain the 
correct energy spectrum and the eigensolutions. We also point out that the action of 
the ladder operators we construct is similar to the action of the covariant differentiation 
operator (‘edth’ operator) of the Bondi-Metzner-Sachs group (Newman and Penrose 
1966, Goldberg et a1 1967). For the second Poschl-Teller equation only the special 
case K = 0 was solved before. We treat both the bound states and scattering solutions. 

2. The second Poschl-Teller equation 

The second Poschl-Teller equation is 

r E [0, a). - 
ar’ sinhZ aI r cosh’ a1 r 
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We may assume A > K ,  for if A < K ,  we can change A + -A - 1 ,  because the equation 
remains unchanged under K + - K  + 1 and A + -A - 1 .  Furthermore the mappings 
{r  + ir, A + A - 1, E + - E }  or { a l  + i a , ,  A + A - 1 )  provide the analytical continuation 
to the first Poschl-Teller equation. We introduce a change of parameters: K = 
- m - g + i ,  A = m - g - i ,  p = 2 a , r a n d  (2.1) becomes 

1 ( m  + g +f)( m + g -+) ( m  - g - f ) ( m  - g + +) [ 5-i ( sinh' P / 2  - cosh' P / 2  ) + A ]  * ( r)  = 0 

A =  M E / 2 h 2 a : .  (2 .2 )  
Following Infeld-Hull-Miller factorisation of type A, we define operators M + ,  M - ,  
M 3  acting in the same space of functions to be determined as 

M'cL,,, = exp(ia) --+f ( m  + g +;) coth -+ $( m - g +f) tanh - I(lm,g ( aaP 2 P, 2 

LaP 

P 

1 2 1/2 = [ A + ( ~ + I )  1 $m+l,g 

(2.3) 
P 
2 

M - I , ~ ~ , ~  = exp(-ia) -+f ( m  + g -f) coth - i t (  m - g -f) tanh 

1 2 1 / 2  = [ A + ( ~ - I )  1 4m-1 .g  

a 
M3 $m,g = -i - 4m.g  = mI(lm,g cy E [O, 2 n ) .  

da 

The operators M + ,  M - ,  M 3  close under S U ( 1 , l )  algebra (Bargmann 1947, Barut and 
Fronsdal 1965) satisfying the relations: 

[M' ,  M - ]  = -2M3 

[ M ' ,  M 3 ] =  T M ' .  

The Casimir product is 

Q S U C I , ~ ,  +m,g = ( - M ' M - +  M3 M3 - M3)$m,g = ( - A  - a ) c L m , g  E I (  1 - I ) $ m , g *  

We have denoted the eigenvalue of Q by l ( 1 -  l ) ,  hence we obtain 

l = m - n  m > n E N  1\ = -(/-i)* 2 

which gives immediately the energy spectrum 

The discrete energy spectrum is obtained from the discrete representations 

0: 1 =f, 1 , ; ,  . . . ( m , g ) = l , l + l ,  . . .  
0; I='  2 ,  1 1  , 2 , .  * .  ( m , g ) = - l , - l - l , . .  . .  

Equation (2.2) can now be written in the algebraic form 

[ QSUC 1.1 1 - - 1)1(Clm,g = 0. 
We now define 

d 

ay 
-i - +m,g = g$m,g 

M ' =  M ,  i iM2 (2.6) 
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and obtain the SO(2, 1 )  generators 

a a . COS 
MI = -i cos a coth p---i sin a--]  - 

aa ap s inhp  

a a sin a 
M2 = -i sin a coth p-+i cos a--i ~ 

aa ap sinh p 

a 
-+ i i  sin a coth p 
ay 

a i  
ay 2 cos a 

[ M2, M3] = i M I .  

(2.7) 

As in I we shall now introduce the second set of ladder operators. We go back to 
(2.2) which can also be obtained from (2.1) by interchanging m and g such that 

operators 
K = - m - g + '  2 ,  A = - m  + g  - 4 .  Again, factorisation of type A leads to the ladder 

G + ~ ! I , , , ~  = -exp(i y )  (--+; a ( g  + m +f) coth -+; P ( g  - m + f) tanh ap 2 

P 

1 2 1/2 =[.A+(g+d 1 *m,g+, 

(2.8) (a, 2 p, 2 
G-$,,, = -exp( -iy) - + f ( g  + m -4 )  coth - + ; ( g  - m -;) tanh - (Lm,g 

1 2 1/2 = [ A + ( g - d  1 *m,g-1 

a 
G3*,,&. = -i Y E  [ O ,  2.rr). - 

(Lm,g = g*,,, 

The operators G', G-, G3 form another S U ( 1 , l )  algebra and the Casimir product 
leads to the same energy spectrum (2.4) and the same algebraic form (2.5). 

We define G' = GI +iG2 and obtain the generators G,, i = 1 ,2 ,3 ,  as 

COS y a a a i  GI = i - -+i sin y-+i cos y coth p---sin y coth p 
s inhp  aa ap ay 2 

sin y a a a i  G --i- -+ i cos y-- i sin y coth p cos y coth p 
s inhp  aa aP ay 2 

2 -  

(2.9) 

[GI  9 G21= iG3 [ G3, GI] = -iG2 
As expected the above commutation relations differ from those of (2.7) by an extra 
qegative sign. From (2.7) and (2.9) we conclude that 

[G2, G3]=-iG1. 

[Mi, GI1 = 0 i, j = 1,2,  3 

G, = c H,r(a, PI Y ) M ,  
J 

1 
s inhp  0 -coshp 

(2.10) 
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Thus the solutions of (2.1) are the eigenfunctions satisfying 

os”cl . l ,*(r)= l ( l - l ) + ( r )  + = exp(ima) exp(igy)4m,g 
M3 +m,g = N J m , g  (2.11) 

G3 4 m . g  = g+m.g. 
From (2.3) and (2.8) we obtain the following recurrence relations: 

(2.12) 

+ i [ ( / + m  - 1 ) ( - ~ + m ) ] ” 2 + m - l , g ( ~ )  

= f [ ( 1 + g) ( -  I +  g + 1 ) I  ‘ / ’ 4 m , g +  1 ( P ) 
- f [ ( l + g -  1 ) ( - 1 + g ) I ’ ” + m , g - , ( ~ ) .  

In this case, in contrast to I,  because we have a non-compact group, the crucial 
observation again is to compare (2.12) with the recurrence relations for the Bargmann 
function given by (Schneider and Wilson 1979) 

(2.13) 

(2.14) 
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In order to express the solution in an explicit form we use the following (Barut 
and Wilson 1976): 

v!,,,,(e) = (-i)n-mv!, ,m(e) = ( -  i)n-mv',,,(e) 

V!,,,,(e)= [( m - r ) (  n - 1  m ~ ~ ~ 1 ) ] ' ~ 2 ( t a n h $ ~ ) m ~ " ( c o s h $ ~ ) ~ 2 n  n + l - 1  

(2.15) 

x2F,[1-n, 1 - n - 1 ;  l + m - n ;  -sinh2f8] 
andintermsoftheoriginalvariables r, K ,  A ( P = 2 a , r ,  m = f ( A - ~ + l ) , g = - ; ( ~ + A ) ,  
I = f ( A  - K  + 1 - 2 n ) )  we obtain, after using Euler's identity for *F1 functions, the final 
form 

f ( A - k + 1 )  + 1 - 1 
(sinh a,r)'-"(cosh a l  r)A+' 

; (A  + K ) + / -  1 

x 2 F 1  [(?-1+l) +f, (?+1) +$; ; - K ;  -sinh a , r  3 . (2.16) 

This is one of the standard solutions and the related second standard solution is 
obtained by replacing the r-dependent part by 

3 [ ( A + K  I +  1 ) ,  (?+I); $+ K ;  -sinh2 a, r . (2.17) 
(sinh a ,  r)"(cosh al  r)A+'2Fl -- 

Thus we have obtained the exact solution to (2.1) for a finite number of bound states 
satisfying the discrete spectrum (2.4). For the special case K = 0 our result is in 
agreement with the earlier result using non-algebraic methods (Flugge 1971). However 
the latter gives only the r-dependent part of the solution without the appropriate 
coefficients. 

Historically the equations similar to (2.1) were studied by Weyl (1909). According 
to Weyl's criterion the equation has eigensolutions if a 2 y s  1 where a = 
1 + I  - K  + $ I +  IA +$ I ,  y = 1 + I  - K  + $ I  and it has a discrete eigenspectrum as given by 
(2.4) if y - a / 2  < O J  1 - I - K  +$ I  - / A  + $ I <  0 and the eigenfunctions are square 
integrable as in (2.14). Furthermore (2.1) has also a continuous spectrum if y - a / 2  3 
O J  1 + I - K  + $ 1 - / A  + f I 3 0. This can be immediately obtained by using the continuous 
principal representation of SU(1, I ) :  Cy: / = $ + i t ,  ~ E ( o , ~ o )  or /=;-it, tE(--oO,O); 
( m ,  g )  = 0, i l ,  *2, .  . . and C;I2 with ( m ,  g )  = *+, *;, . . . . The Cp and C;" representa- 
tions of Bargmann (1947) respectively correspond to U'(g, $ + i t )  and U-(g, $ + i t )  
representations of Kunze and Stein (1960). From (2.14) we obtain the continuous 
energy spectrum 

t' ?E(-oO,cO).  
2 4 h 2  

E, = - 
M (2 .18)  

The continuum solutions which are the scattering states as obtained from (2.16) are 
not square integrable. However, it is known (Bargmann 1947, Kunze and Stein 1960, 
Barut and Phillips 1968, Mukunda 1969, Lindblad and Nagel 1970, Ruhl 1970) that 
for a fixed pair ( m ,  g)  or ( K ,  A )  the linear combinations of solutions of the type (2.16) 
and (2.17) are dense in the Hilbert space of square integral functions over the half-line 
r E [0, CO] .  
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Thus from (2.16) and (2.17) and using Kummer's identity for 2 F ,  functions we 
obtain ( a  = i t)  
$ ( r )  = A(sinh a ,  r)"(cosh a ,  r )*+ '  

X F, [ (f + f  ( K + A )  +a) ,  (f + f  ( K + A )  - U ) ;  (f + K ) ;  -sinh2 a ,  r ]  

+ &(sinh a ,  r)'-"(cosh a ,  r ) A + l  

X 2 F , [ ( t + f ( h  - K + 1) a) ,  ( q + i ( A  - K + 1) - a);( i  - K ) ;  -sinh2 0, r ]  

where 

2Ir(f+f(A - K + 1) -k all2 
I r [ f + f ( K  + A )  + ( . ] I2  

2 1 r [ f + f ( K + A ) + a ] / '  

I r [ f + f ( h  - K + 1 ) + V ] I 2  
B = (  (2.19) 

This solution can be expressed in another form as obtained by Bargmann (1947) as 
follows: 
$ ( r )  = A(tanh a ,  r)A(sinh a ,  r)2u 

x 2F,[(f-4(A - K + 1) -a ) ,  ( f - t ( ~  + A )  - a);  (1 - 2 ~ ) ;  -sinh-' a ,  r ]  

+ &(tanh a ,  r)A(sinh a ,  r)-2rr 

X 2 F l [ ( f - i ( A  - K  + 1) +a) ,  ( t - i ( K  A )  + a) ;  (1 +?.U); - ~ i n h - ~  ( Y l  r ]  

where 

2 A - K + l ) + U ] / '  r ( 2 a )  exp(i.rr2a) 
r[t+f(A - K + 1) .f U ] r [ $  - f ( K  + ) + a]  

(2.20) r( -2a)  exp( -irr2a) 

1 A = (2/r[f+'(  

B = (  

lr[f + f ( K  + A ) + U]\ '  

21r[f+i(h - K + 1 ) + U ] 1 2  

I r [ f + f K + h  +all2 ) r ( f + f ( h  - K + 1) - (T)r(f -i ( K  + A ) - a) '  
Solutions obtained in (2.19) and (2.20) are not square integrable and they are essentially 
obtained from suitable linear combinations of (sinh p)'" V i , (  -irr - p )  with 1 = f+ U 

and 1 = f - a, U = it. Since the Bargmann functions are asymptotically exponential it 
is possible to obtain square integrable functions by forming asymptotic 'wavepackets'. 
To obtain this conveniently we express (2.19) or (2.20) as follows: 
$ ( r )  =iA(tanh a ,  r)"(cosh a1 r)2rr  

X 2 F, [ (f + f ( K  + h ) - a) ,  (f - f ( A  - K -I- 1) - a )  ; (f + K ); tanh' a , r ]  
+iA(tanh a ,  r)"(cosh a ,  r ) - 2 u  

X 2 F,[  (f -k f ( K  + A )  i- U), (f 
+fB(tanh a l  r)'-"(cosh a I  r )2u 

+fB( tanh  a ,  r)'-"(cosh a ,  r )2u 

f ( A  - K + 1) + U ) ;  (f + K ); tanh' a ,  r ]  

X 2 F I  [ (f - f ( K  + ) - U), (f + f ( h  - K -k 1) - U); ($ - K ) ;  tanh' , r ]  

X 2 F , [ ( f - f ( K  A )  + a) ,  ( f + i ( h  - K  + 1) -k U); (t - K ) ;  tanh' (Yl r ]  (2.21) 
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where A and B are some arbitrary constants depending on K ,  A, U and to be fixed by 
physical requirements or by asymptotic square integrability of +( r ) .  In fact several M 
functions as in (2.19) or (2.20) are hidden inside A and 8; they will, after all, become 
irrelevant at the end. Since as r + *a, tanh a ,  r + *1 we can simplify the F,  functions 
in (2.21) by using Gauss’s theorem: 

r( c)r( c - a - b )  
r( c - a)T( c - b )  F , [a ,  b ;  c; 13 = Re(c - a - b ) >  0. 

We obtain from (2.21) (from (2.18) U = ik*/2a, k* = (2ME)”’/h) 

lim $( r )  = ++( r )  = A+ exp(iLr) + B+ exp(-ik*r) 

lim + ( r )  = t + - ( r )  = A- exp(i i r )+ B- exp(-ik*r) 

7-cc 

,-.-cc 

where 

We can easily see that (2.22) satisfy the unitarity of the scattering matrix which is a 
U(2) matrix 

JA_1’+IB+I2 = /A+IZ+JB-J2 

and the quasiunitarity of the transfer matrix which is a SU(1, 1) matrix 

lA+12 - /B+J’ = 1A-1’- IB-12 

provided K = 0, *2, + 4 .  . . . This is not surprising since asymptotically the g terms in 
(2.3) and the m terms in (2.8) disappear and the presence of one of the two potential 
terms in (2.1) becomes irrelevant. We now normalise ++( r )  such that A -  = 1 and 
B+ = 0. This fixes A and B and consequently, after some straightforward computations, 
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we obtain the reflection and transmission coefficients as 

= I TI2 = x2/(  1 + x') 
1 

[ B - I ~  = 1 ~ 1 ~  =- 
1 + x 2  

(2.23) 

For the case K = 0, k 2 ,  * 4 , .  . . we obtain 

sin' T A  

sin' T A  + sinh2( & / a 1 )  
lR12= 

(2.24) 

which are in agreement with standard results (Flugge 1971). 

3. Morse-Rosen equation and Eckart equation 

The Morse-Rosen equation for polyatomic molecules is 

2MUo 1 2MB 2 M E  - (9) tanh a1 x +7] @ ( x )  = 0 X E  [0, co).(3.1) [++(-) cosh2 a I x  f i  

This equation can be algebraised by using the factorisation (Nieto 1978) either of type 
A or of type E. The algebraic ladder operators from the factorisation of type A raise 
or lower the eigenvalues (quantum numbers) of the self-adjoint operators which are 
the elements of a Lie algebra, as we have seen in the case of first and second 
Poschl-Teller equations. But those operators from the factorisation of type E raise or 
lower the eigenvalues of the invariant operators (Casimir operators) in the enveloping 
algebra of a Lie algebra. We show these equivalent algebraisations for ( 3 . 1 ) .  

First, in ( 3 . 1 )  we use the following reparametrisations and substitutions: 

2 M E / h ' a : =  - p 2 - q 2  2 M U o / h 2 ~ : =  -A-:  

2MB0/ f i2a :=  -2pq 

a1 x + i r / 2  t* In tanh( z / 2 )  

@(x) t* (i/sinh z ) " ~ P (  z ) .  

Consequently ( 3 . 1 )  becomes 

[ ( p - $) ( p + 4) + q 2  + 2pq cosh Z ]  + A 
1 

(3.3) 
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This equation is identical to the second Poschl-Teller equation (3.2) with the following 
identifications: 

Poschl-Teller Morse-Rosen 
P 
4 g 

A - A 

m - 
c., 

P - Z 
* ( P I  - d z ) .  

(3.4) 

Thus the algebraisation by factorisation of type A can be carried out as before. From 
(2.4) and (3.2) we obtain the energy spectrum 

D, = 2p = 2( s - n ) [ s  - ( M B , / h 2 a : ) ]  2 n = 0, 1 , 2 , .  . . (3.5) 
s = 1 - 1 = -;+ f [ 1 + 8MU,/  f ~ ~ a : ] " ~ .  

Furthermore, from (3.2) and (2.14) we obtain the solution to (3.1) as 

@ ( ~ ) = ( 2 ~ + 1 ) " ~ V B : d ( - i r r - z )  

sinh z = i/cosh a l x  

loE @*(x)@(x) cosh a l x  dx  = 1 

cosh z = -tanh a l x  (3.6) 

where cosh a l x  dx is the normalised Haar measure induced by the Bargmann functions. 
Using (2.15) we obtain @(x) explicitly as 

@,(x) = [ a , ( 2 s +  1)22"-2s ( ; q ,  (:--;)I 
x exp( qa,x)(cosh a l ~ ) - . s t n  

x 2 F , [ - n ,  2 s +  1 - n ;  s - n + q +  1 ;  e"l"/(e"l"+e-"l" 1 3 .  (3.7) 
Our results (3.5) and (3.7) are in agreement with earlier calculations (Weyl 1910) (the 
extra term ( p2 - q2)/p of Nieto's normalisation does not appear in our normalisation 
due to the Haar measure (3.6)). Our algebraisation using the factorisation type A is 
somewhat artificial (Miller 1964, 1968) (in fact, according to the Infeld-Hull 
classification the parameter q is artificially introduced to achieve factorisation type 
A). The complex substitution alx+i.rr/2-ln tanh(z/2) is similar to Weyl's unitarity 
trick. 

The scattering solutions of (3 .1 )  are obtained by taking p+iv,  and q+-iv,; 
( v,, v q )  E (-03, 03) so that the continuous energy spectrum from (3 .5)  is given by 

h2a:  MB: 1 
EYP =- v,+-- 

2 M  2h2a:  v i *  (3.8) 

The algebraisation as in (2.3)-(2.11) further implies that we consider 0; discrete series 
unitary representations of SO(2, 1 )  in a continuous basis, where a non-compact operator 
is diagonal (i.e. Pi are similar to Mi in (2.7) and Qi are similar to Gi in (2.9)) 

p2*yI).yy = vp*"p*"q Q2J/v,,,uq = v&v,,,u,, 
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and the corresponding matrix element we consider is the matrix element of exp(-izP,) 
or exp( -izQ,) between the respective bases. These matrix elements have already been 
obtained (Barut and Phillips 1968, Lindblad and Nagel 1970). We give below the 
solutions which are normalised to reproduce the correct asymptotic behaviour: 

@ “ ( X )  = 
r(s + i v, + 1 )r( s - i vq + 1 ) 
T(s - iv,, + l ) r (  s + iv, + 1) 

exp[(.rr/2)(vP - v,)I 
2ir 

( - ~ ) ( i / 2 1 ( u p - v  1 exp(-icu,xv,)(2 cosh culx)-Iypr(ivq - i v p )  

x 2 F , [ - s  + iv,,, s + iv, + 1; iv, - iv, + 1; ealx/(ealx + e-alx) 

+ r(s +iv, + i)r(s -iv, + 1) 
I- ( s - i v, + 1 ) r ( s + i vp + 1 ) 

( - l ) ( l / 2 1 ( u q - v  p I exp(-icu,xv,,)(2 cosh a,x)-’”qr(iv,, - i v q )  

x 2 ~ 1  [- s + i v,, s + i vq + 1 ; i vq - i vp + 1 ; calx/ (eel-‘ + e-ulx) 11 (3.9) 

where we have made use of the representation function obtained by Ruhl (1970). 
Before we algebraise the Morse-Rosen equation using the factorisation of type E, 

we discuss the closely related Eckart equation (Eckart 1930) which was used to describe 
the penetration of a potential barrier by electrons. The Eckart equation is 

-+-- 

5 = -exp(2irx/l) A, B, 1 constants, B 3 0. 

We can rewrite (3.10) as 

MA M -- t a n h ( i r x / l ) + ~ ( 2 W - A )  
a’ MB 1 
(2-3 cosh2(irx/l) h2  h 

(3.10) 

(3.11) 

which is similar to (3.1). This means that in the Eckart equation (3.11) we can use 
similar substitutions and parametrisations as in (3.2): 

(2MW/h2- MA/h2)12/ir2= -a2-  b2 

(MB/2h2)(l2/7r2)=A’+! (MA/2h2)(12/.rr2) = -2ab 

irx/ 1 + i . r r /24n  tanh( 2/2) 

f(x)-(i/sinh z)’”g(z). 

(3.12) 

Consequently we obtain an equation similar to (3.3) 

+ A ’  g ( z )  = O .  (3.13) [$-4( sinh2(z/2) cosh2( z/2) 
This means that we can perform an algebraisation exactly identical to the one we 
developed for the second Poschl-Teller equation and from (2.4) we obtain the important 
condition 

(3.14) 

In order to maximise the potential barrier Eckart assumes (see figure 1 of Eckart 1930) 
BsOjA’>- ! .  For A ’ = - L  4 + 1  = 0, there may exist a few bound states given by 0; 
discrete series representations of SO(2, 1). However, the existence of such bound states 

1 1  1 (a + b +$)(a  + b - f )  ( a  - b -$)(a - b + f )  - 

( MB/2hz)( 1 2 /  r2) - a =  A’ = -( 1 -$)’. 
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may be removed by taking B sufficiently large. Thus we are led to the continuous 
principal series representations Cf of SO(2, I ) :  I = ;+it, t E (0, CO) ;  for s = 0, (a, b )  = 
0, *l ,  *2, . . . or for 6 = $, (a, b )  = it, *;. . . . . Now, from the energy relation given 
(3.12) we see that there exist two possibilities. First, for W < A/2 there exist asymptoti- 
cally plane wave solutions (pulses) with fixed discrete energy. However, the second 
possibility, for which W >  A/2, is very interesting. In this case in (3.12) we use the 
analytic continuation a + iv,, b + -ivb, (v,, v b )  E (-03, 03). The continuous energy 
spectrum is given by 

R2v2 MA212 1 A 
2M12 8 h 2 r 2  v’, 2 

W=- v’, f--+--. (3.15) 

Thus we consider the continuous principal series representations C: on a continuous 
basis (A, are similar to M, in (2.7) and B, are similar to G, in (2.9)) 

where fyil,yh(z) are notationally similar to $,,,,(p) in (2.11). The spectrum of A2,  B2 
is the real line with multiplicity two-there exist two eigenstates for each eigenvalue. 
This is because there exists an outer automorphism (parity) of the Lie algebra {A,}+ 
{A,}; { B,}  + { gt} where 

A2fv,,Yh(~) = v,fV,,~,(z) B2 f v o . v h  ( z, = vbfv, ,  q, ( 

{A, 9 22, A,) = -{-A1 9 A29 -A31 
i 8 l 9  62,  83}={-B1, B29-B3}. 

In the case of the continuous principal series Cf (and also for the supplementary 
series) this automorphism can be realised explicitly by 

A, = PA,P-’ = exp(irv,)f-.a,.h 
W”uIYh = exP(i.irvb)f,,-,,. 8, = PB,P-‘ 

Therefore P2 = 1 and the eigenvalues of P are *1 which we denote as E,,  &b. As 
[ P, A2] = [ P, B2] = 0, ( P  and A2) and (P and B2) can be diagonalised simultaneously. 

The matrix elements we consider in this case are those of exp(-iA,z) or exp(-iB,z) 
between the two continuous bases of eigenvalues v, and vb with respective multiplicity 
E ,  and &b. These representation functions are already known (Barut and Phillips 1968). 
Thus from (3.6), (3.9) and (3.12) we obtain the solutions which are as usual normalised 
to reproduce the correct asymptotic behaviour 

fy (X)  ( 1/4r2)[cosh 7T(  Vb + f )  E,Eb cosh 7T( V, + f )  + i E b  sinh T (  vb - V,)] 

x r(4 + i t + i v, )r(f - i t  - i vb )( - 1) i ( y ~ - - y b ) / 2  exp( -i rxvb/ 1 )  
x[2 cosh(rx/l)]-’”~T(iv,-iv,) 
x 2 ~ 1  [t - i t  + i v,, t + i t  + i v, ; i v, - i vb + 1 ; e (e ”‘’‘ + e-Txif )I  

( 1/4r2)[cosh r( vb - t )  
+ (-1)2siEb sinh 7T( V ,  - v b ) ]  

&,&b cosh r( v, - t )  

( -11(Yh-vy) i2  exp( -irxv,/ 1)(2 cosh r x /  I)--IYhr(i v, - i v b )  

(3.16) 
where S = 0, 4 depending on the Cp representation and we have made use of the 
representation function obtained by Mukunda (1969). Our result (3.16) up to a phase 
term is in agreement with Eckart’s result. 

Thus we have algebraised all three equations in a unified manner using factorisation 
of type A. We have summarised in table 1 the representation of SO( 1,2) used in each 
case. 

~ , F , [ ~ - i t + i v ~ , f + i t + i v ~ ;  ivb - iv ,+ 1; eTX/‘/(eTx/’ +e-”””)] 
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Table 1. Representations of S U ( 2 , l )  occurring in various equations. 

Equation 

Poschl-Teller 
equation (2.1) 

Morse-Rosen 
equation (3.1) 

Eckart 
equation (3.10) 

W z A / 2  
B 3 0 ,  

Bound states Scattering states 

Energy label Representations Energy label Representations 

Casimir label 0; on Casimir label Cf on 
/ discrete basis / = + + i t  discrete basis 

s=o  1 
Function 0; on Eigenvalues of 0; on 
eigenvalues discrete basis non-compact continuous 
of compact, operator basis 
operator 

, 2  

No discrete 
spectrum 

Eigenvalues of C f  on 
non-compact continuous 
operator basis 

I = + + i t ;  
s = o  L 3 2  

We now algebraise (3.1) using factorisation of type E. While factorisations of type 
A give rise to ladder operators which raise or lower the eigenvalues (for example p ,  q )  
of the operators within the Lie algebra, the factorisation of type E brings about ladder 
operators which raise or lower the Casimir label (for example I) of the same Lie algebra 
and thus the latter ladder operators are in the enveloping algebra. The algebraisation 
of (3.2) by factorisation of type A has led us to two SO(2, 1) groups. We distinguish 
them as SO(2, l )p  and SO(2, l), corresponding to the p and q eigenvalues. Since, as 
we have seen in (2.10), the generators of SO(2, l )p  commute with those of SO(2, l) , ,  
we have the complete group structure as SO(2,1),OS0(2, l),  = S0(2,2).  We know 
(Kihlberg 1965) that S0(2,2)  covers S0(2 ,1) ,0S0(2 ,  l ) ,  twice since the former 
contains a centre of order two while the latter has no centre. Since the Casimir operators 
Qp and Q, of SO(2, l )p  and SO(2, l), respectively are equal, under the isomorphism 
given above, the second quadratic Casimir product (0”) of S0(2,2)  vanishes while 
the first quadratic Casimir product Q’ is proportional to Qp and Q,. The invariant 
product Q’ may be constructed (similar to Qp and Q,) in terms of bilinear forms of 
the I raising and lowering ladder operators provided these operators form an algebra. 
We will see below that they do not close under a commutation relation and we will 
see that these bilinear products are elements in the enveloping algebra of SO(2 , l )O  

We use the parametrisations (3.2) in (3 .1)  and from factorisation of type W we 
SO(2, l )  - S0(2,2).  

obtain the ladder operators 

L+Ol(x) = --+ lal tanh a I x  ( d t  

(3.17) 
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We see that L’ do not close under an algebra. In order to see the implication of the 
SO(2, 1)@S0(2 ,  1 )  group structure, we use the substitution (3.2) in z variables and 
obtain 

(3.18) 

The recurrence relations for Bargmann functions from SO(2, 1)@S0(2 ,  1 )  are given 
by (Schneider and Wilson 1979, Barut and Wilson 1976, Basu and Wolf 1983) 

1 
1 

a 
sinh e-+ 1 cosh V!,,,(O) = - - [ ( l -  n ’ ) ( l +  n ’ ) ( l -  n ) ( l +  n)]1’2Vl;fn1(8) 

a n’n 
(sinh O---&l-l) cosh e+- 

( I -  1 )  
(3.19) 

1 
-- - [ ( I  - 1 - n ‘ ) ( /  - 1 + n ’ ) ( l -  1 - n ) (  I - 1 + ~ ) I ” ~ V ! , : ; ( O ) .  

(1-1) 

On comparison we find that Q I ( x )  is given by the Bargmann function V i , - q ( z )  as 
obtained earlier in (3.6). The energy spectrum is certainly given by the parametrisations 
(3.2) and furthermore the algebraisation using factorisation of type E for the continuum 
part of (3 .1 )  and for the Eckart equation follows immediately as (3 .1)  and (3.11) are 
identical except for the coefficients. 

4. Discussion 

As in I,  we found ((2.3) and (2.8)) that the SU(1, l ) @ S U ( l ,  1 )  algebras describe the 
fixed energy states of a family of systems with quantised coupling constants K and A, 
as some kind of periodic table of elements. The energy range is finite, determined by 
the range lmin to I,,,, or n = 0 to nmax = ( A  - ~ ) / 2  (see (2.4)). In addition we can change 
energy, or 1, for fixed coupling constants K and A as the type E factorisation shows 
((3.17) and (3.18)). Again we see that our family of systems can be embedded in an 
S 0 ( 4 , 2 )  (Barut er a1 1987b). For the first Poschl-Teller equation the range of discrete 
energy is infinite but we have a finite family of systems, while for the second Poschl- 
Teller equation we have an infinity of systems, but a finite number of discrete energy 
levels. In other words, the role of the subgroups is interchanged, SU(1, l ) O S U ( l ,  1 )  
against SU(2)@SU(2).  This accounts for the analytic continuation between the two 
cases. 
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